

Grazing incidence XRD to investigate ion implantation induced damage

Amy Gandy

Royce Technology Platform Lead in Advanced Characterisation of Radiation Damage in Materials

Department of Materials Science and Engineering, University of Sheffield

Implantation induced damage

Ion implantation can induce displacement damage to replicate (ish!) the damage produced by nuclear reactions.

University of Sheffield Implantation induced damage

SRIM simulation of 5 MeV Au²⁺ ion implantation to a fluence of 5 x 10¹⁵ Au ions/cm² into a SiFeVCrMo alloy.

ROYCE

NucleUS

Immobilisation Science Laboratory

Cross-sectional TEM (XTEM) gives excellent information on implantation induced structural transformations, but requires extensive training!

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

X-ray wavelength range 0.01 < λ < 100 Å \approx interatomic distances in a crystal.

XRD can be used to:

- Identify phases by comparison with data from known structures,
- Quantify changes in the cell parameters (e.g., cell volume, interatomic spacing),
- Determine crystallite size

ROYCE

- Determine crystallographic structure (cell parameters, space group, atomic coordinates) of novel or unknown crystalline materials.
- Determine temperature induced phase transformations.

http://pd.chem.ucl.ac.uk/pdnn/inst1/xtube.htm

ROYCE

X-rays are generated by heating a filament (e.g., W) to emit electrons which are directed onto a target (e.g., Cu).

Interaction with core shell electrons in the target results in ionisation.

An electron from a higher energy level drops to the lower energy level, emitting a *characteristic X-ray*, with specific energy and wavelength.

$$10 - 3d - M_{IV} / M_{V}$$

$$10 - 3p - M_{II} / M_{II}$$

$$10 - 3s - M_{II} / M_{II}$$

$$M_{II} / M_{II}$$

$$M_{I} / M_{I} / M_{II}$$

$$M_{I} / M_{I} / M_{I}$$

$$M_{I} / M_{I} / M_{I} / M_{I}$$

$$M_{I} / M_{I} / M_{I} / M_{I}$$

$$M_{I} / M_{I} / M_{I} / M_{I} / M_{I}$$

$$M_{I} / M_{I} / M_{I} / M_{I} / M_{I}$$

$$M_{I} / M_{I} / M_{I$$

http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

 $\Delta E = E_L - E_K$

http://pd.chem.ucl.ac.uk/pdnn/inst1/xrays.htm

 $K_{\alpha} L \rightarrow K$ transitions

 $K_{\beta} M \rightarrow K$ transitions

Cu source:

$$K_{\alpha} = 1.54184 \text{ Å}$$
 \frown
 $K_{\beta} = 1.39222 \text{ Å}$

Want monochromatic X-rays, so use a filter to supress Cu K_β transitions...

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

X-ray Diffraction 101

Incident Plane Wave

http://salfordacoustics.co.uk/soundwaves/superposition

Diffraction patterns are only produced when the diffracted X-rays interfere constructively.

ROYCE

Constructive interference only occurs if the Xrays are coherent and remain in phase with one another following diffraction...

> Scattered Plane Wave

... and these conditions are only realised when the X-rays are diffracted through specific angles:

$n \lambda = 2 d \sin \theta$

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

We use Bragg's Law to predict the angles through which X-rays will be diffracted from a set of lattice planes.

The diffracted angles are determined by the distances between parallel planes of atoms.

$n \lambda = 2 d sin θ$

Recording the angles at which diffracted waves are observed gives a diffraction pattern which is unique to the material:

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

http://pd.chem.ucl.ac.uk/pdnn/inst1/optics1.htm

ROYCE

X-rays are divergent when produced.

Bragg-Brentano geometry "focuses" the divergent and diffracted beams using Soller slits.

Divergence slit determines the X-ray "footprint" on the sample.

Both the source and the detector move by – θ and θ in this geometry.

The X-ray may probe too deeply to study ion implantation induced damage.

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

University of **Sheffield** Grazing Incidence geometry

X-ray source and detector move

ROYCE

X-ray source does not move $\rightarrow \omega$ is small and constant.

Detector moves through 2θ .

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

The angle, ω , required for the X-rays to penetrate into a specific region beneath the surface is calculated by:

$$\omega = \sin^{-1}\left(\frac{x}{3\mu}\right)$$

Where x is the thickness of the region (i.e., the implanted region), and μ in the attenuation length of the material, which is **dependant on the density and composition of the material and X-ray energy.**

μ measures the exponential decay of X-ray intensity as it passes through a material.

 μ is defined as the length travelled before the X-ray intensity falls to 1/e of its original value.

Aim to probe a depth of 3 μ , where there has been > 95 % attenuation of incident X-rays in the defined thickness.

Calculation of a compounds attenuation length is determined through addition of μ values of each individual element, multiplied by a weight fraction term.

13

μ for your material can be calculated using for example the Hephaestus software package, or: https://henke.lbl.gov/optical_constants/atten2.html

University of X-ray penetration depth Sheffield

SRIM simulation of 5 MeV Au²⁺ ion implantation to a fluence of 5 x 10¹⁵ Au ions/cm² into a SiFeVCrMo alloy.

ROYCE

$$\omega = \sin^{-1}\left(\frac{x}{3\mu}\right)$$

$$\omega = \sin^{-1}\left(\frac{500}{3\times 5683}\right)$$

Grazing Incident Angles for XRD			
<u>SiFeVCrMo</u>	Density = 7.2 g.cm-3		Probe Depth
Energy Cu k alpha	8030 eV	Thickness of damaged region (nm)	500
Absorption length in SiFeVCrMo (nm)	5683	GI angle	1.681

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

PANalytical X'Pert3

Instrument details:

- Cu X-ray source (1.544 Å).
- Ni Kbeta filter.
- Programmable divergence and acceptance slit.
- Goebel mirror.
- PIXcel1D detector.

ROYCE

- 0.27 parallel plate collimator with secondary beam monochromator.
- 45 position sample changer.

Applications:

16

- Grazing incidence XRD (GIXRD).
- X-ray reflectometry (XRR).
- Texture and stress analysis.
- High temperature XRD.

Grazing Incidence XRD

Parallel beam mirror

Fixed ω at e.g., 1.681^o

ROYCE

17

University of Damage recovery in HEAs Sheffield

ROYCE

Room temperature grazing incidence XRD patterns from SiFeVCrMo, (B) before and (A) after room temperature ion implantation with 5 Mev Au²⁺ ions, to a fluence of 5x10¹⁵ Au²⁺ ions/cm^{2.}

GIXRD patters show a transformation from tetragonal to BCC structure following ion implantation.

Phase analysis used the International Center for Diffraction Data's (ICDD) PDF-4+ database.

A S. Gandy, B Jim, G Coe, D Patel, L Hardwick, Sh Akhmadaliev, N Reeves-McLaren, R Goodall; High temperature and ion implantation induced phase transformations in novel reduced activation Si-Fe-V-Cr (-Mo) high entropy alloys, Frontiers in Materials (2019)

> Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

University of Sheffield Implantation induced amorphisation

 $Ca_{1-x}La_{2x/3}TiO_3$ ceramic system used to determine the link between cation vacancies in perovskites and radiation damage resistance (from 1 MeV Kr⁺ ions).

NucleUS

Immobilisation Science Laboratory

University of Sheffield Implantation induced amorphisation

A pseudo-Voigt peak fit to determine crystalline and amorphous fractions produced in ion implanted materials.

ROYCE

S M Lawson, N C Hyatt, K R Whittle, A S Gandy; Resistance to amorphisation in $Ca_{1-x}La_{2x/3}TiO_3$ perovskites – a bulk ionirradiation study, Acta Materialia (2019)

Ion Beam Irradiation and Characterisation: Best Practice Manchester, March 2nd – 3rd 2023

NucleUS

Immobilisation Science Laboratory

Applications:

- Grazing incidence XRD (GIXRD).
- X-ray reflectometry (XRR).
- Texture and stress analysis.
- High temperature XRD.

Other machines are available through Royce: https://www.sheffield.ac.uk/royce-institute/x-ray