

BLUEPRINT

UK HYDROGEN: TESTING

GAP ANALYSIS AND NEXT STEPS

Introduction

The ability to test materials for hydrogen production, storage, distribution and end use is critical to widescale hydrogen deployment in a 2050 timescale as outlined in the Henry Royce Institute (Royce) Materials for End-to-End Hydrogen report published in 2021.

Over the past 3 months Royce has been working with a cross industry/academic Working Group to develop a blueprint of the UK's hydrogen materials testing requirements. The blueprint development has involved consultation with businesses, research technology organisations (RTOs), test houses and universities to build a comprehensive picture of current UK capabilities and complete the gap analysis to identify areas for future funding.

This blueprint provides, for the first time, a comprehensive view of the UK testing capabilities to inform future spending plans in this area. We expect the blueprint to be refined further as we continue to receive input and the hydrogen sector evolves.

UK Testing Needs

The UK's hydrogen testing needs can be broadly divided into a series of temperature and pressure domains (see Figure 1) aligned to industry and academic needs in each area.

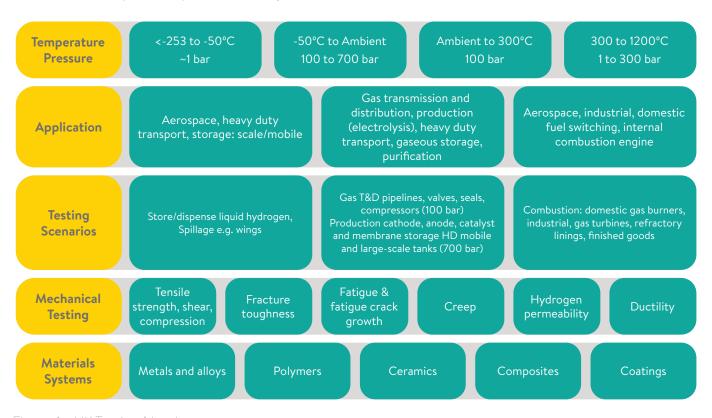


Figure 1 - UK Testing Needs

UK Existing Facilities

The UK has hydrogen testing facilities available which we were able to map across businesses, universities, RTOs, and Test Houses to provide for the first time a consolidated picture of UK capabilities in this space.

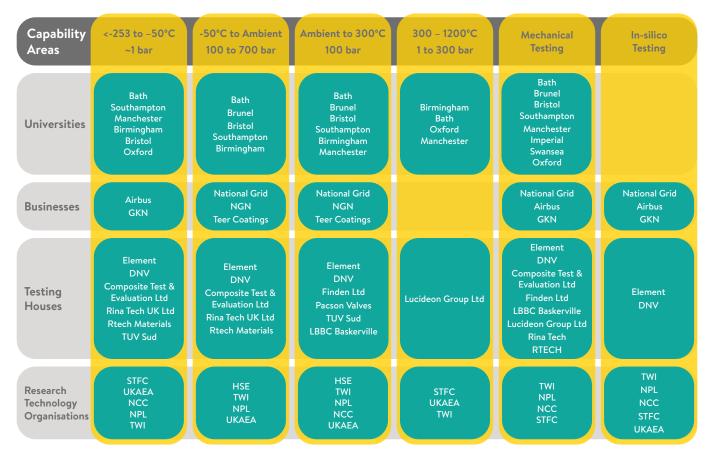


Figure 2 - UK Testing - Existing Facilities

UK Testing Hardware Priorities

From this analysis we were able to determine the hardware priorities to support the testing needs, namely:

- Testing facilities at coupon, component, and system level to assess materials performance over a range of operating pressures and temperatures
- Operando, in-situ, and ex-situ atomic resolution characterisation of materials including chemical and surface interactions of hydrogen (liquid or gas) with material surfaces
- In-silico based testing capability combining physics and data-based models
- Mechanistic studies to understand materials performance and failure modes
- Facilities to understand impact of impurities on coupon, component, and system performance
- Accelerated ageing tests
- Sensor technology development to detect material changes in real time

Hardware Priority Mapping

Based on the input from our cross industry/academic Working Group we were then able to map the existing university capabilities against the hardware priorities.

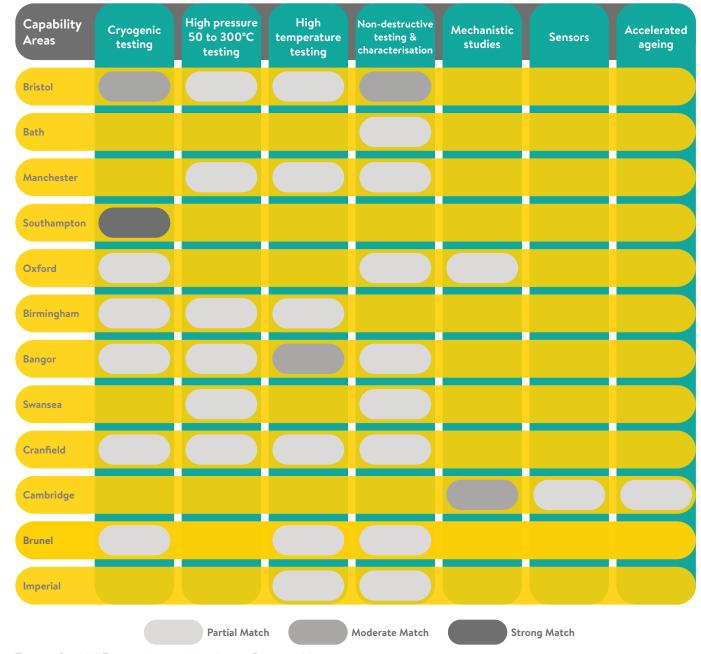


Figure 3 - UK Electrolysis - Hardware Priority Mapping

Gap Analysis

The UK has core capabilities in hydrogen testing. The analysis highlighted areas in which we need to invest further to *strengthen the base* to provide resilience and develop the future talent pool.

Specifically, this related to following areas:

Universities

- Extend **University of Surrey membranes** expertise to electrochemistry to complement existing activities at other universities for example, **Nottingham**
- Utilise University of Southampton's established cryogenic centre's capabilities for electrochemistry
- Draw on Ulster University's expertise in hydrogen safety related issues
- Link Newcastle University's systems integration expertise and EPSRC Systems Integration role
- Utilise H2FC SUPERGEN hardware and skills base

Businesses, Testing Houses and RTOs

- Extend cryogenic nuclear testing capabilities into electrochemistry applications
- Explore further options for hardware and capability sharing between RTOs and universities

The study further highlighted some significant gaps that needed to be addressed, specifically this related to the following areas:

Universities

- Lack of testing facilities at lower cryogenic and higher temperature end of spectrum
- Increase resources directed towards hydrogen sensors, mechanistic studies, and accelerated ageing
- Further development of in-silico methods as an alternative to physical testing and simulating degradation pathways (for example accelerated ageing)
- Innovative solutions to seal development to enable high temperature strain testing

Businesses, Testing Houses and RTOs

- UK testing capability beyond coupon (i.e., component and system) level to address businesses increasingly looking overseas to access suitable facilities
- Lack of UK liquid hydrogen storage and handling capability

Recommendations and Next Steps

The recommendations and next steps will ensure the UK has the required materials testing resources to support wide scale hydrogen deployment in a 2050 timescale.

Recommendations

An initial £5m investment to address specific areas highlighted in the blueprint, namely;

- · Mechanical testing facilities to address industrial end use scenarios
- Accelerated ageing facilities combining physical and in silico approaches to predict material lifetimes
- Integration of blueprint findings into the Department for Business, Energy and Industrial Strategy (Hydrogen Advisory Council and Energy Strategy), EPSRC (Hydrogen Research Co-ordinators) and Innovate UK hydrogen funding plans

Next steps

- Complete development of a publicly accessible hydrogen materials database
- Publish assessment of current UK hydrogen materials testing capabilities
- Define required UK investment to support the remaining priorities in the **strengthening of the base** and **addressing the gaps** areas referenced in the testing blueprint
- Submit funding bids to address testing blueprint priority areas and leverage further funding from BEIS, EPSRC, Innovate UK and the private sector
- Develop comparable blueprints for end use, distribution and storage
- Complete talent pipeline assessment to support materials blueprint delivery



royce.ac.uk

info@royce.ac.uk

in Henry Royce Institute

o henryroyceinstitute

